مؤتصمرعجمان الدولى الخامس للبيئة Ajman 5th International A Comparison between a Stand-Alone and Grid-Connected Roof Mounted PV Solar System under Abu Dhabi Net Metering Scheme Using HOMER

<u>Issah M. Alhamad</u>

SOLAR ENERGY

Contents

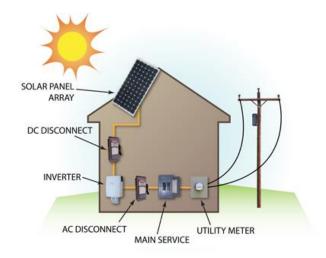
- Introduction
- Background
- Research Methodology
- Results & Discussion
- Conclusions

Introduction

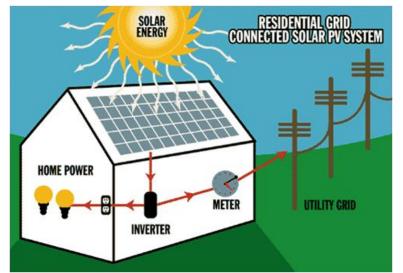
- UAE electric power consumption per capita ≈11,264 kWh per person (2014)
- UAE mainly relies on Fossil fuels in energy production
- The Carbon footprint of electricity production was almost 26.6 million tons of Co₂ Equivalent (2014)

Introduction

- Abu Dhabi consumed 62,979 (GWh) of electricity in 2016
- Only 30,867 MWh produced from renewable resources.
- The need to expand the power generation from clean renewable resources is of high importance.



fppt.com


Introduction-Solar Energy

- Solar energy is clean & free with no environmental impacts
- Heavily available in UAE
- Cost has become much lower in the past few years
- A 10 kW PV system can cost 75,000-100,000 AED including PV cells, invertor, wiring, installation (Grid connected)

Background

- PV cells captures light from the sunlight and convert it into electricity
- The excess energy can be stored in batteries for night use and emergency
- The excess energy can also be fed into the utility grid (if allowed)

Background

- Feed in tariffs: benefits for electricity generated from renewable resources by the consumer (Germany, Spain, Denmark)
- Net metering: consumers are charged for their monthly or annually net purchases from the grid (Dubai, Abu Dhabi)

fppt.com

Background-HOMER

- Modelling renewable energy systems can be very hard
- Many complex variables & constrains
- HOMER (Hybrid Optimization of Multiple Energy Resources) can model renewable vs. traditional systems
- HOMER solves the complexity of Micro-grid systems cost and reliability

Methodology

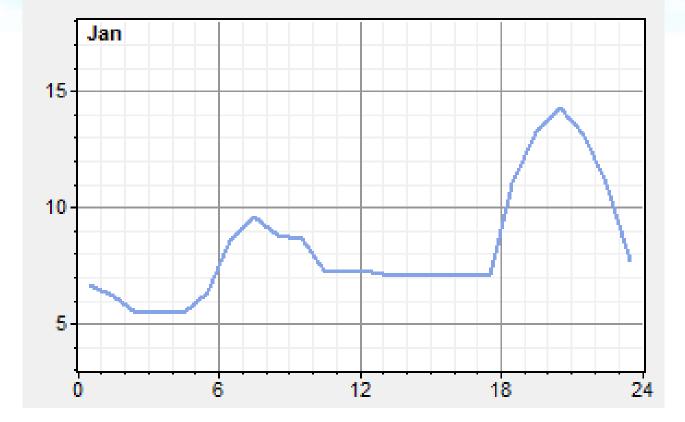
- The objective is to measure the feasibility of a roof mounted PV system for a certain mixed-use building while connected to Abu Dhabi electrical grid by:
- A. Selecting a building
- B. Electrical energy daily demand calculation using Carrier HAP
- C. PV system design and simulation using HOMER for 2 scenarios: 1. stand alone, 2. Grid-conneced
- **D.** Results & Conclusions

PR

Ζ

The building

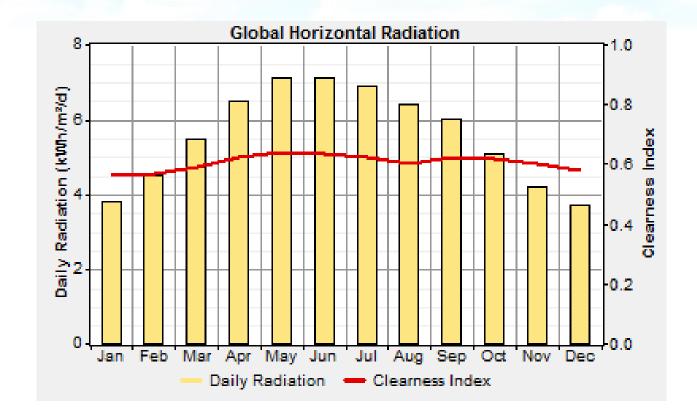
- Community centre
- 520 m² of Area
- Multiple office rooms
- Gym
- Indoor lounge/dining area
- External dining area (Alfresco)
- Library
- Kitchen and toilets
- Cathedral type ceiling



Building energy demand

- Daily electrical demand was found using Carrier HAP (Hourly Analysis Program)
- The building was selected to be cooled by outside water (District cooling)
- The electrical energy demand consists of:
- A. HVAC equipment such as pumps and fans
- **B.** Indoor lighting
- C. Receptacle equipment: TV's, computers

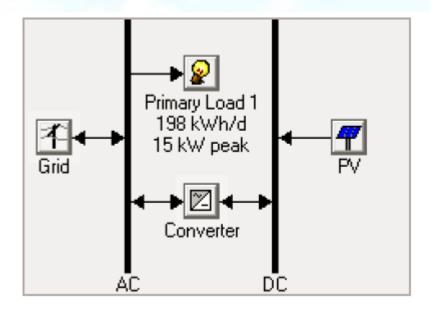
Building energy demand



fppt.com

Solar Radiation Data

Abu Dhabi national center of Meteorology

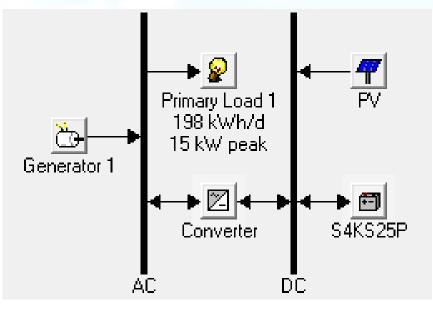

fppt.com

HOMER Simulation-Grid-connected System

- **PV cells** (Polycrystalline Silicon solar cells)
- Convertor/invertor
- Electrical AC load
- Grid connection
- Solar radiation

(Abu Dhabi national center of Meteorology)

- No batteries
- Electricity price 0.08 \$/kWh
- Life 25 years



HOMER Simulation-Stand-alone System

- **PV cells** (Polycrystalline Silicon solar cells)
- Convertor/invertor
- Electrical AC load
- No grid connection
- Solar radiation

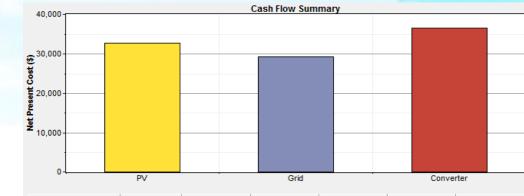
(Abu Dhabi national center of Meteorology)

- Batteries
- Diesel Generator
- Diesel Price 1 \$/Liter
- Life 25 years

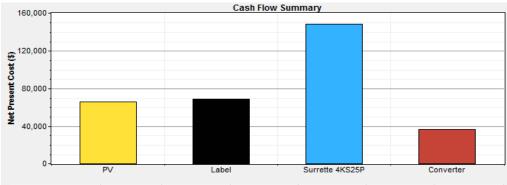
Results-Technical

Grid-connected	Stand-alone
5 kW Solar Cells	50 kW Solar Cells
5 kW invertor	50 kW invertor
lo Batteries	100 batteries (4V, 1,900 Ah. 7.6 kWh)
lo Generator	25 kW diesel generator
pprox. Area 250 m ²	Approx. Area 500 m ²

Results-Financial


	Grid Connected	Stand-alone
Initial cost (\$)	41,250	176,250
NPC (\$)	98,544	319,037
LCOE (\$/kWh)	0.107	0.345
Renewable fraction (%)	50.7 %	93.3 %
Excess electricity (%)	0 %	11.6 %
Payback Period (years)	7.1	30.5

AR ENER



Results

• Grid-connected

Component	Capital (\$)	Replacement (\$)	O&M (\$)	Fuel (\$)	Salvage (\$)	Total (\$)
PV	20,000	0	12,783	0	0	32,783
Grid	0	0	29,304	0	0	29,304
Converter	21,250	8,867	7,990	0	-1,650	36,456
System	41,250	8,867	50,077	0	-1,650	98,544

Component	Capital (\$)	Replacement (\$)	O&M (\$)	Fuel (\$)	Salvage (\$)	Total (\$)
PV	40,000	0	25,567	0	0	65,567
Generator 1	35,000	0	6,302	30,871	-3,155	69,018
Surrette 4KS25P	80,000	59,516	25,567	0	-17,087	147,996
Converter	21,250	8,867	7,990	0	-1,650	36,456
System	176,250	68,383	65,425	30,871	-21,892	319,037

Stand-alone

Results-Environmental

Pollutant (kg/year)	No PV System	Grid-connected	Stand-alone
Carbon dioxide (CO ₂)	45,674	18,110	6,359
Carbon monoxide (CO)	0	0	15.7
Unburned hydrocarbons (UHCs)	0	0	1.74
Particulate matter	0	0	1.18
Sulfur dioxide (SO ₂)	198	78.5	12.8
Nitrogen oxides (NO, NO ₂ , N ₂ O)	96.8	38.4	140

Conclusions

- Grid-connection can reduce the cost of PV systems while performing good in terms of renewable energy fraction
- Grid-connection can be very helpful to the country economy if applied on a large scale
- Grid-connected system works good in terms of initial costs, LCOE, O&M, payback period and emitted pollutants
- Stand-alone systems work good in terms of environmental aspects but fails in financial sides, as a results, it can be used at distant locations with no grid at a low scale.

2

SOLAR ENERGY

References

- 1. Abu Dhabi Regulation and Supervision Bureau (2017). *Installation of Solar PV Systems- Guidance Document*. Abu Dhabi.
- 2. Abu Dhabi Water & Electricity Authority (2015). *ADWEA Sustainability Report 2014*. [online] Abu Dhabi: ADWEA. Available at: http://www.adwea.ae/media/64571/adwea%20sustainability%20report%202014-english.pdf
- 3. Abu Dhabi Distribution Company (2017). *Home Residential Rooftop Solar and Net Metering*. [online] Available at: https://www.addc.ae/en-US/residential/Pages/Rooftop-Solar-and-Net-Metering.aspx
- 4. Abu Dhabi Water & Electricity Authority (2018). *Meeting future demand ADWEA*. [online] Available at: http://www.adwea.com/en/about-us/research-and-innovation/meeting-future-demand.aspx/
- 5. Al-Hamdani, A., Dawood, A., Abdullah, K. and Mousaui, S. (2016). Optimal sizing of photovoltaic systems using HOMER for Baghdad. *International Journal of Computation and Applied Sciences*, 1(2), pp.1-6.
- 6. Ali, M. and Emziane, M. (2013). Performance Analysis of Rooftop PV Systems in Abu Dhabi. *Energy Procedia*, 42, pp.689-697.
- 7. Assi, A., Al Shamisi, M. and Hejase, H. (2012). Solar Radiation in UAE A Comparison between Ground Station Measurements and Satellite Estimation. In: *Global Conference on Global Warming*. Istanbul.
- 8. IEA Internationa Energy Agency (2016). *Snapshot of Global Photovoltaic Markets IEA PVPS*. IEA PVPS T1-31:2017.
- 9. Kassim, M., Al-Obaidi, K., Munaaim, M. and Salleh, A. (2015). Feasibility Study on Solar Power Plant Utility Grid under Malaysia Feed-in Tariff. *American Journal of Engineering and Applied Sciences*, 8(2), pp.210-222.
- 10. Solar Power Europe (2016). *Global Market Outlook For Solar Power / 2016 2020*. Brussels: European Photovoltaic Industry Association.
- 11. Sustainabilityoutlook.in. (2017). *5 things to consider before you plan for a rooftop PV plant | sustainabilityoutlook.in.* [online] Available at: <u>http://www.sustainabilityoutlook.in/content/5-things-consider-you-plan-rooftop-pv-plant</u>
- 12. The International Renewable Energy Agency (IRENA) (2013). *Renewable Power Generation Costs in 2012: An Overview-IRENA report*.

SOLAR ENERGY

Thank You