

TOWARDS>>>

SHAPING THE

FOR ENVIORMENTAL SUSTAINABILITY

E

D

FI

مــؤتــمــر عــجــمــان الـدولي السادس للـبـيئـة Ajman 6th International Environment Conference

UNIVERSITY OF TECHNOLOGY IN THE EUROPEAN CAPITAL OF CULTURE CHEMNITZ مـــؤتــمــر عــجــمـــان الـدولي السادس للـبـيئـة Ajman 6th International Environment Conference

INDUSTRY 4.0 – CHALLENGES AND CHANCES FOR SMART CITIES

Prof. Dr. Dr. h. c. Wolfram Hardt

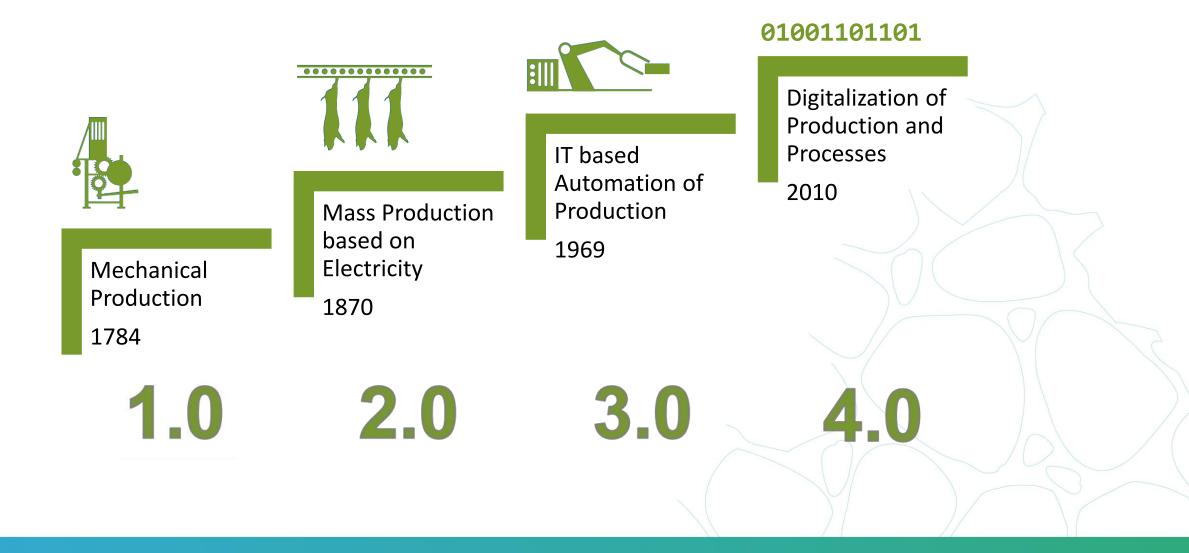
TOWARDS>>> 2071 SHAPING THE FOR ENVIORMENTAL SUSTAINABILITY PUDIC - MIC

Introduction Chemnitz University of Technology, Germany

مــؤتــمــر عــجـمـــان الـدولي السادس للـبيئة Ajman 6th International Environment Conference

Agenda

• How do you define Industry 4.0 ?


• What is the technological basis ?

• Challenges / Chances ?

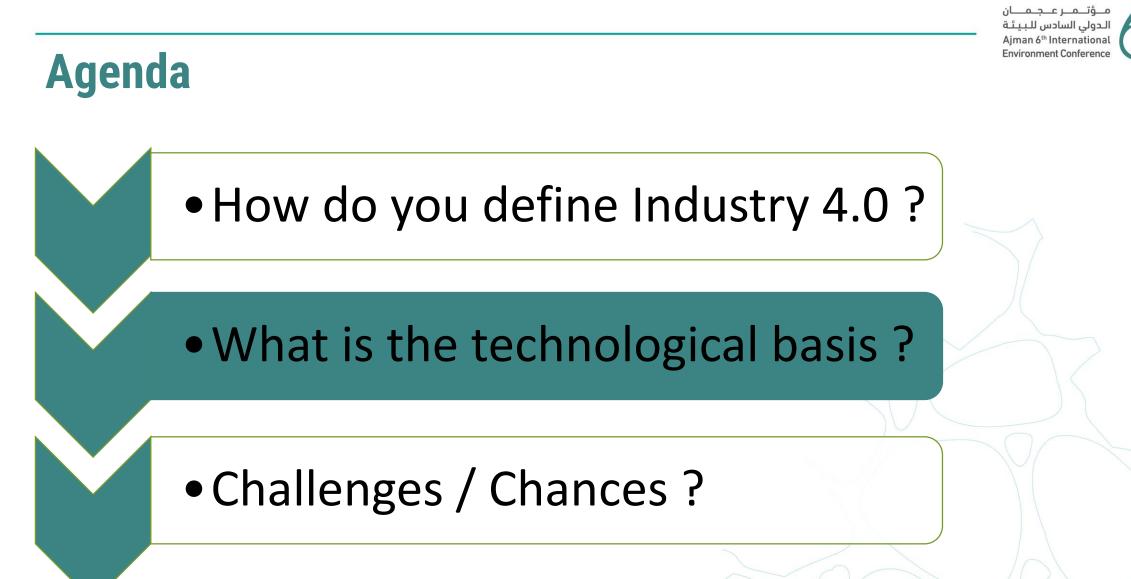
Industrial Revolution - History

مــؤتــمــر عــجـمـــان الـدولي السادس للبيئـة Ajman 6th International Environment Conference

Industry 4.0

- Revolution
 - Do the same thing as before in a completely new way
 - Much more productivity
 - > New products

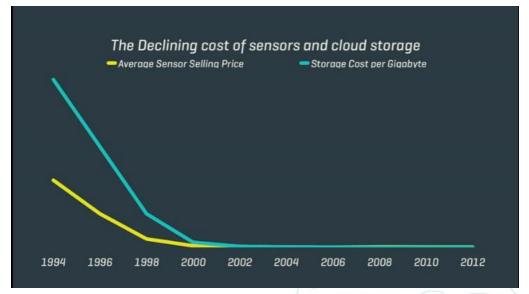
مـــؤتـــمــر عــجــمـــان الـدولي السادس للـبـيئـة Ajman 6th International Environment Conference


Digitalization of Production and Processes

- Digital Network
 - connects in Real-Time (online)
 - $\,\circ\,$ Machines, Objects,
 - Humans, Processes

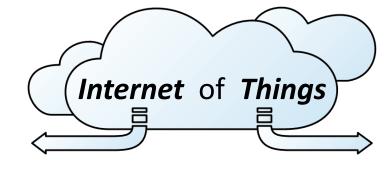
Industry 4.0 is increasing Productivity

- Global networks introduce decentralized optimization
 - Load balance between production locations
 Intelligent coordination of production phases
 Management of supply chain
- Global networks introduce integrated processes
 - Handling of orders
 Handling of payment
 - Handling of payments
 - Customer communications


ensorv

مــؤتــمــر عــجـمـــان الـدولي السادس للبيئة Ajman 6th International Environment Conference

Technological Basis: Sensory


- Sensory
 - > To see
 - > To listen
 - ➤ To feel

- Technological basis for new system's perspective
 Systems become reactive
 - Systems become forward-thinking
 - Systems become social

Technological Basis: Network Technology

Interaction

- Communication
 - RFID, NFC
 - Bluetooth (Low Energy), Zigbee
 - Internet / WLAN / Cloud
- Smart devices
 - Data handling
 - Additional functions

Application

- Automation of buildings
- Wearables

...

 Automated service processes

Network Technology: RFID / NFC

- RFID: Radio Frequency Identification
 - Wireless identification / localization
 - Transponder with readable data

RFID	
------	--

NFC

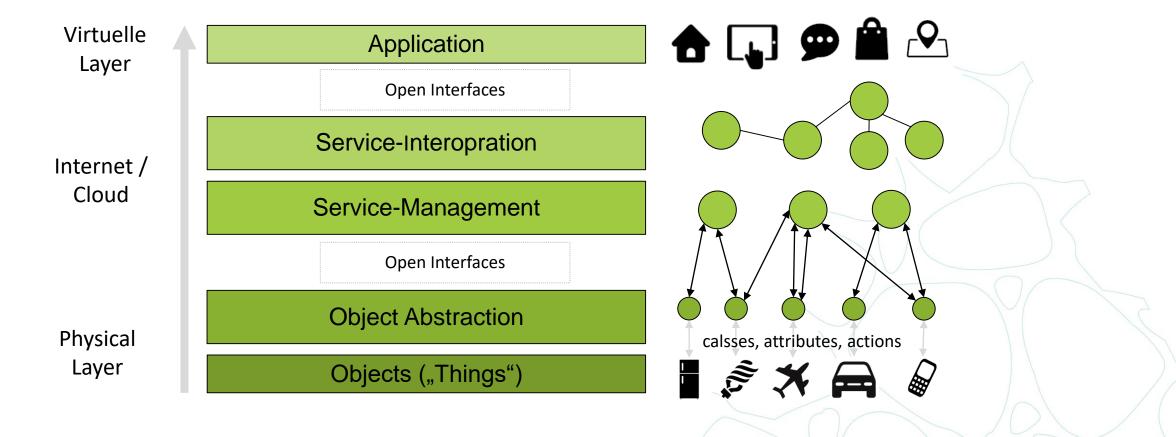
Frequency		Typical distance	Data rate
LF	30-500 kHz	< 1 m (passive)	low
HF	3-30 MHz	< 1 m (passive)	middle
UHF	433, 850-950 MHz	3-6 m (passive)	high
SHF	2.4 – 2.5, 5.8 GHz)	~ 10 m (active)	high

• NFC: direct data transmission based on RFID

Network Technology: Bluetooth (Low Energy)

- Technique:
 - Frequence: 2.4 GHz
 - Bitrate: 1.0 Mb/s
 - Max. power: 10 mW

- Interconnection / communication by configured profiles
- Benefits:
 - Highly energy efficient
 - Ideal suited for communication in WSN: wireless sensor network



Network Technology: Interoperability of Heterogeneous Networks

Technological Basis: Software Layer Model

مـــؤتــمـــر عـــجــمـــان الـدولي السادس للـبـيئـة Aiman 6th International

Environment Conference

Agenda

What is the technological basis ?

Challenges / Chances ?

Challenge I

- Guarantee of data privacy
- ➤Guarantee of data security

• Examples:

- >Who gets to know were I am going?
- > Who gets to know, if my product had a failure before?
- Hacking attacks?

مـــؤتـــمــر عــجــمـــان الـدولي السادس للـبـيئـة Ajman 6th International Environment Conference

Challenge II

- Adaptation of production processes:
 - Interconnection of machines
 Management of decentralized data
- Adaptation of network technology: $\gg IPV4 \rightarrow IPV6$
- Adaptation of working process:
 - Where do I get information?
 When have I to present for work?
 Hacking attacs?

Challenge III

Implementation of network, server, cloudImplementation of services, applications

• Qualification of production and administration staff

- ➢Data organization
- ≻Data management
- Software services and application

الـدولي السادس للـبـيـئـة Ajman 6th International

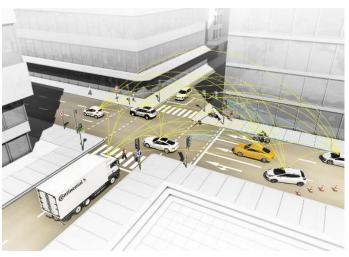
Environment Conference

Chances: Industry 4.0 is introducing new Products

- Products due to Industry 4.0
 - Mobile devices
 - Network Technology
 - Internet of Things Technology
 - > Mobile applications: mobile Robots, mobile assistant system

Services needed to handle Industry 4.0

- Education for workers and leaders
- ➢ Process implementation
- ≻ITK maintenance

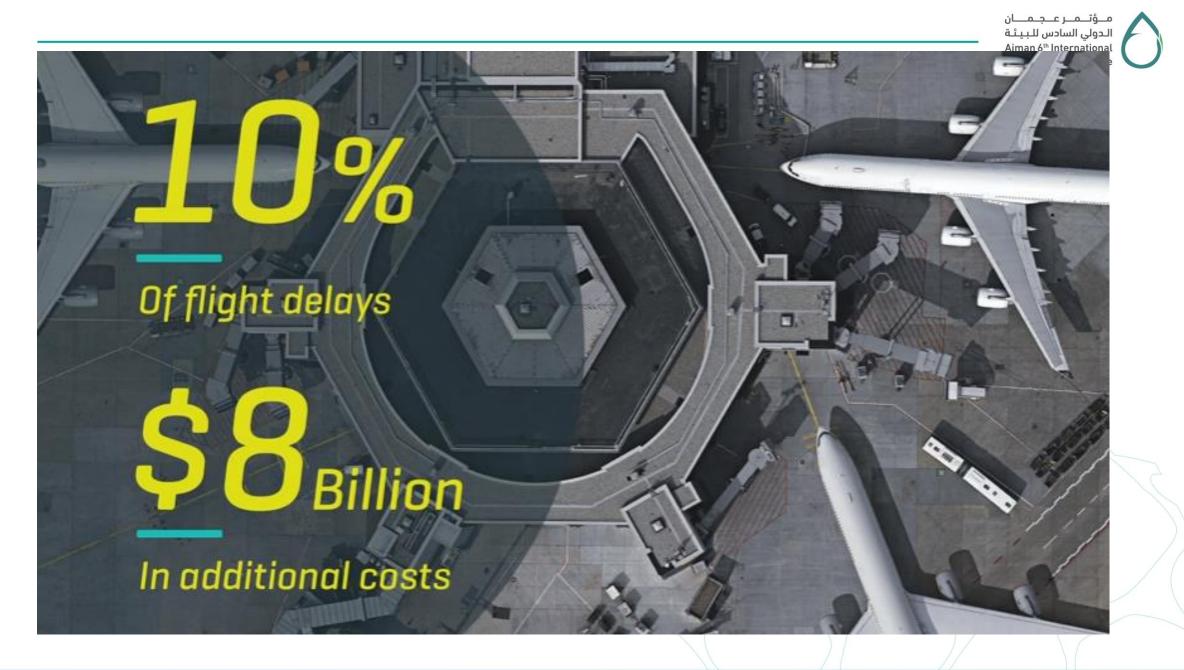


مــؤتــمــر عــجـمـــان الـدولي السادس للـبيئة Ajman 6th International Environment Conference

Application Domain: Smart City

- Sensor network, e.g. for maintenance
- Building control
- Car2X

Quelle: Continental AG


مـــؤتـــمــر عـــجــمـــان الـدولي السادس للـبـيئـة Ajman 6th International Environment Conference

Quelle: Siemens AG

Quelle: ProDomus; http://www.prudomus.de/hausautomation/

الدولى السادس للبيئة Aiman 6th International Allion passengers at their destinations on-time

مــؤتــمــر عــجـمـــان

ference

مـــؤتــمــر عــجــمـــان الـدولي السادس للـبـيئـة Aiman 6th International rence

5 cents per KWH

مـــؤتــمــر عــجـمـــان الـدولي السادس للـبيئـة Aiman 6th International Tference

Industry 4.0 for Smart City in Germany

Future Trend

Research, analysis, suggestions by BITKOM, Fraunhofer, et.al.
 Building up central competence centers

Increase of Productivity (aggregate value added)

6 areas of business have been analyzed

 Increase of 78 Bil. Euro until 2025
 Increase of 1.7% until 2025

 Mechanical and plant engineering:

 Increase of 23 Bil. Euro until 2025
 Increase of 2.2% until 2025

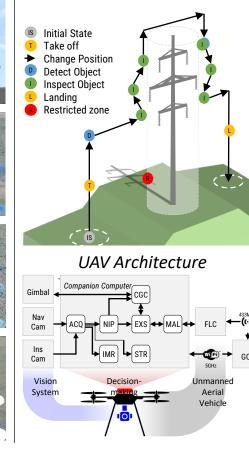
TUC Projects for Smart City Applications

- Automated Micro Air Vehicle Inspection (APOLI)
 - Vision-based drone mission
 - Automated inspection
 - Electric power transmission systems
 - Buildings and facilities
 - Trains and wagons
 - Digital data
 - Transfer to Cloud system
 - Al-based analysis

TUC Project: APOLI

Motivation:

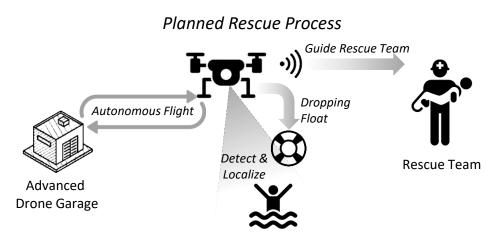
Damaged Insulators



Concept:

Autonomous Mission

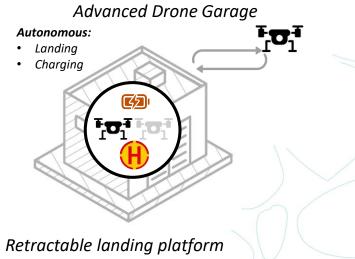
Ongoing Results: Image Processing Insulator ate Classical IP based AI based AI based Insulator Detector Insulator Detector Burn-mark Detector Autonomous UAV Decision-making Unmanned Aerial Vehicle Vision System **Research Field: Partners:** • TU Chemnitz (Germany)


- 1. Image Processing
- 2. Decision-making 3. Unmanned System
- 4. Autonomous Flight

- National Power Transmission Grid Ltd
- (Mongolia)
- Mongolian University of Science and Technology

RescueFLY

Cross-county / cross-state prevention and rescue using drones in Lusatia



- Shorten the time for water rescue
- Dropping floats early
- Navigating rescue forces to the casualty

Partners:

- Björn Steiger Stiftung (BSS)
- Brandenburgisches Institut für Gesellschaft und Sicherheit (BIGS)
- Brandenburgische Technische Universität Cottbus-Senftenberg (BTU)
- Technische Universität Dresden (TUD)
- Technische Universität Chemnitz (TUC)
- THOLEG Civil Protection Systems
- DRONIQ

- Multiple docking stations
- Automated drone monitoring and loading

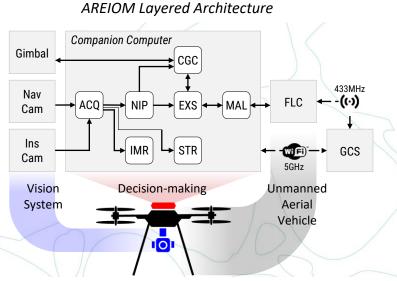
Research Field:

1. Unmanned System

- 2. Al based Image Processing
- 3. Decision-making
- 4. Autonomous Landing
- 5. Robotics

TUC Research

Adaptive Research Multicopter Platform (AREIOM)

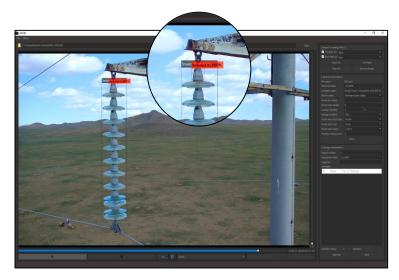

Research activities:

- On-board real-time data exploitation of high-resolution mission sensor systems
- Decision making and active perception for navigation and automated mission execution
- Hardware-software-co-design for reliable flight control and multi-sensor signal processing
- Mission safety supervision to guarantee anytime safe autonomous mission execution

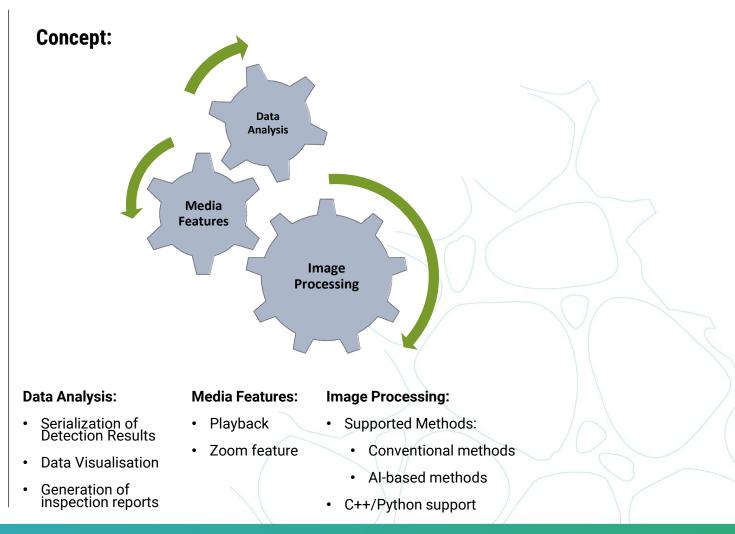
Application:

- Vision-based inspection of wind turbines, photovoltaic systems, and power transmission lines
- Aerial photogrammetry (2D/3D building/object reconstruction, area documentation)
- Exploration and surveillance of large-size areas or regions with hard accessibility
- Disaster and emergency relief (e.g., flooding, forest fire)
- Transportation of lightweight goods and payload (e.g., small parcels, medicine)

Safety Layer Mission Layer Navigation Layer Flight Control Layer



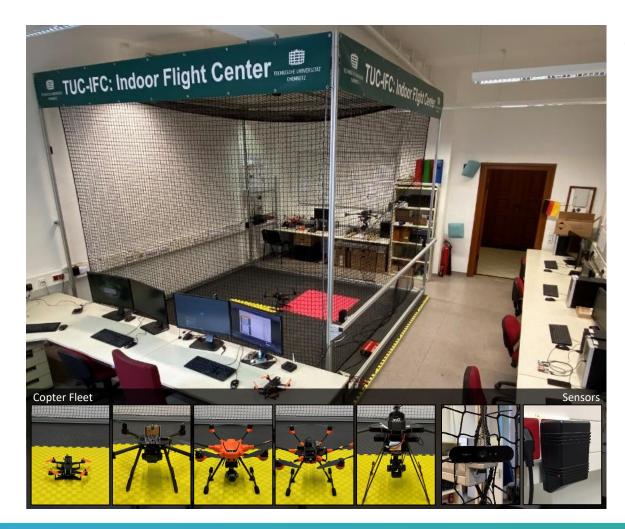
Software and Hardware Architecture


TUC Research Intelligent Frame Extractor (IFE)

On going results:

Motivation:

- Post-processing support for different projects
- Visualisation of video datasets
- Support visualization of different computer vision methods



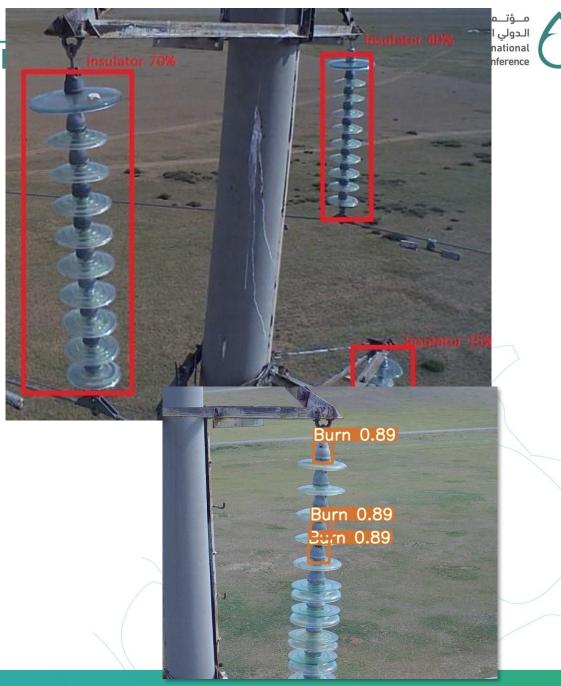
مــؤتــمــر عــجـمـــان الـدولي السادس للـبـيئـة Ajman 6th International Environment Conference

مــؤتــمــر عــجـمــان الـدولي السادس للـبيئة Ajman 6th International Environment Conference

Indoor Flight Center (IFC) Semi & interactive real-world environment

Goal:

- Developing unmanned system
- Developing autonomous missions
- Safe indoor flights
- Investigate and explore multiple AI-based methods


Flight Cage:

- Flight area: 4.0 x 4.0 x 3.8 m
- Equipped with:
 - 4K cameras (x3)
 - Indoor Real-time Location System (UWB based)
 - Protection net
 - Soft landing mat
- Copter fleet: 5 different copters

Intelligent Frame Ext TUC Project AI based Image Processing

- Manual inspection led to these drawbacks:
 - Time Consuming
 - Life Threatening
 - Large Capital needed
- Artificial intelligence and algorithms bring MAVs inspection breakthrough
- AI Visual defect inspection based on machine learning and computer vision techniques is employed for the defect and mismatch assessment.
 - Automatic Detection of high voltage powerline insulators using a mounted camera on MAV

Professorship

- Head of Computer Engineering Chair
- Director of Foundation International Computer Science- and Meeting Center Saxony (IBS)
- Successfully completed Ph.D. and habilitation:
- Experience:
 - 20 years of experience in research, teaching, doctoral education
 - supervisor Ph.D. & postdoc candidates
 - 15 years as director of the University Computing Center
 - 12 years as dean of the Faculty of Computer Science at the Chemnitz University of Technology

Email:	hardt@cs.tu-chemnitz.de
Phone	+49 371 531-25550
Fax	+49 371 531-25559
Chair Website IBS Website	https://www.tu-chemnitz.de/informatik/ce/professur/professor.php.en https://www.ibs-laubusch.de/en/
Address:	Chemnitz University of Technology Faculty of Computer Science Chair of Computer Engineering Straße der Nationen 62 D-09111 Chemnitz, Germany

THANK YOU FOR YOUR ATTENTION

Prof. Dr. Dr. h. c. Wolfram Hardt

Emailhardt@cs.tu-chemnitz.dePhone+49 371 531-25550Fax+49 371 531-25559Chair Websitehttps://www.tu-chemnitz.de/informatik/ce/professur/professor.php.en
https://www.ibs-laubusch.de/en/AddressChemnitz University of Technology
Faculty of Computer Science
Chair of Computer Engineering
Straße der Nationen 62
D-09111 Chemnitz, Germany

A I E C 2 O 2 2 |

WWW.AIEC.AE